Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 143-152, 2021.
Article in English | WPRIM | ID: wpr-881055

ABSTRACT

Drug resistance is a major obstacle in the development of effective colorectal cancer (CRC) therapy. Our study aimed to explore the reversal abilities of Jiedu Sangen decoction (JSD) on the 5-fluorouracil (5-FU) resistance and its underlying molecular mechanisms. Expression changes in HIF-1 of CRC tissues were firstly revealed by bioinformatics analysis. Afterwards, cell viabilities of JSD and 5-FU treatments on 5-FU resistant human colon cancer cells (HCT-8/5-FU) were determined. Expressions of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT)/p-AKT, hypoxia-inducible factor 1 (HIF-1α), as well as glycolysis related proteins such as L-lactate dehydrogenase A (LDHA), Glucose transporter type 1 (Glut1), Hexokinase 2 (HKII), and cysteinyl aspartate specific proteinase (Caspase) family members in HCT-8/5-FU cells, HIF-1α silenced HCT-8/5-FU cells and tumor tissues were detected by western blotting. HIF-1α was found over expressed in CRC tissues according to public available datasets in Oncomine. Growth inhibition rates of HCT-8/5-FU cells were increased along with the increase of JSD concentrations. JSD caused down-regulated HIF-1α, PI3K, AKT/p-AKT, HKII and Glut1, as well as up-regulated Caspase3 and Caspase9 in HCT-8/5-FU cells and tumor tissues. In HIF-1α silenced HCT-8/5-FU cells, synergistic group showed significantly reduced expression levels of PI3K, AKT, p-AKT. Additionally, up-regulated expressions of Caspase6 and Caspase7 were observed. JSD combined with 5-FU also exhibited obvious inhibitory efficiency on tumor growth in vivo. JSD may reverse 5-FU resistance by suppressing glycolysis via PI3K/AKT/HIF-1α signaling pathway, thereby inhibiting glycolysis and induce apoptosis to enhance anti-tumor activity.

2.
Journal of Zhejiang University. Science. B ; (12): 234-245, 2020.
Article in English | WPRIM | ID: wpr-846975

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality globally. It accounts for the majority of primary liver cancer cases. Amyloid precursor protein (APP), a cell membrane protein, plays a vital role in the pathogenesis of Alzheimer’s disease, and has been found to be implicated in tumor growth and metastasis. Therefore, to understand the relationship between APP and 5-fluorouracil (5-FU) resistance in liver cancer, Cell Counting Kit-8, apoptosis and cell cycle assays, western blotting, and reverse transcription-quantitative polymerase chain reaction (qPCR) analysis were performed. The results demonstrated that APP expression in Bel7402-5-FU cells was significantly up-regulated, as compared with that in Bel7402 cells. Through successful construction of APP-silenced (siAPP) and overexpressed (OE) Bel7402 cell lines, data revealed that the Bel7402-APP751-OE cell line was insensitive, while the Bel7402-siAPP cell line was sensitive to 5-FU in comparison to the matched control group. Furthermore, APP overexpression decreased, while APP silencing increased 5-FU-induced apoptosis in Bel7402 cells. Mechanistically, APP overexpression and silencing can regulate the mitochondrial apoptotic pathway and the expression of apoptotic suppressor genes (B-cell lymphoma-2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl)). Taken together, these results preliminarily revealed that APP overexpression contributes to the resistance of liver cancer cells to 5-FU, providing a new perspective for drug resistance.

3.
Chinese journal of integrative medicine ; (12): 116-121, 2019.
Article in English | WPRIM | ID: wpr-776636

ABSTRACT

OBJECTIVE@#To investigate the effects of ethanol extract of Patrinia scabiosaefolia (EEPS) on chemo-resistance of colorectal cancer cells (CRC) and explore the possible molecular mechanisms.@*METHODS@#5-fluorouracil (5-FU)-resistant human colorectal carcinoma cell line (HCT-8/5-FU) and its parental cells HCT-8 were treated with EEPS (0, 0.25, 0.50, 1 or 2 mg/mL), or 5-FU (0, 100, 200, 400, 800 or 1600 μmol/L). The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate the cell viability. Cell density was observed by phase-contrast microscope, cell counting and colony formation assay were used to determine the cell proliferation of HCT-8/5-FU cells treated with 0, 0.5, 1 or 2 mg/mL EEPS. Cell apoptosis was determined by Hoechst staining. Western-blot was performed to detect the phosphorylation of AKT as well as the protein expression level of B-cell CLL/lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax).@*RESULTS@#Compared with HCT-8 cells, MTT assay results indicated that HCT-8/5-FU cells were resistant to 5-FU treatment (P0.05). Moreover, compared with untreated HCT-8/5-FU cells, 1 and 2 mg/mL of EEPS treatment significantly reduced cell density, cell number, inhibited cell survival (P<0.05), and induced apoptosis in HCT-8/5-FU cells. Furthermore, 1 and 2 mg/mL of EEPS significantly decreased the phosphorylation level of p-AKT and Bcl-2 protein expression, and increased the expression of Bax protein (P<0.05).@*CONCLUSION@#EEPS is a promising therapeutic agent that may overcome chemo-resistance in cancer cells, likely through suppression of the AKT pathway and promotion of cancer cell apoptosis.


Subject(s)
Humans , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Survival , Colorectal Neoplasms , Drug Therapy , Pathology , Drug Resistance, Neoplasm , Fluorouracil , Pharmacology , Therapeutic Uses , Patrinia , Chemistry , Phosphorylation , Proto-Oncogene Proteins c-akt , Metabolism , Signal Transduction , Tumor Stem Cell Assay , bcl-2-Associated X Protein , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL